Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electronics and Communication Engineering

BEC010 VLSI Design Sixth Semester (Elective) 2016-17

Course (catalog) description

VLSI Design helps the students to learn basic MOS Circuits and their process technology. The subject also teaches the techniques of chip design using programmable devices and the various concepts of designing VLSI Subsystems.

Compulsory/Elective course	
Credit hours	
Course Coordinator	

:

:

:

:

Elective for ECE students 3 credits Ms. S.Beulah Hemalatha Asst.Professor

Instructors

Name of the instructor	Class	Office	Office	Email (domain:@	Consultation
	handling	location	phone	bharathuniv.ac.in	
Ms. S.Beulah Hemalatha	Third year	SA006		beulahhemalatha.ece	12.30-1.30 pm
	ECE				
Ms.M.Jasmin	Third year	SA006		jasmine.ece	12.30-1.30 pm
	ECE				
Ms.G.Meenakumari	Third year	SA006		meenakumari.ece	12.30-1.30 pm
	ECE				

Relationship to other courses:

 Pre -requisites
 :
 BEC302 Principles of Digital Electronics

 Assumed knowledge
 :
 The students will have a basic knowledge in Digital electronics and Electron devices.

 Following courses
 :
 BEC702 Digital CMOS VLSI

Syllabus Contents

UNIT I MOS TRANSISTOR THEORY

MOSFET– Enhancement mode & Depletion mode – Fabrication – NMOS, PMOS – CMOS fabrication – P-well, N-well, Twin-Tub, SOI – BiCMOS Technology –Comparison with CMOS.

UNIT II MOS CIRCUITS AND DESIGN

Basic Electrical properties of MOS circuits – DC Equations, NMOS & CMOS inverter –Second Order Effects– Basic circuit concepts-Sheet resistance-Area Capacitances-Capacitance calculations-Inverter delays–Scaling of MOS Devices –Scaling Models and Scaling Factors-MOS layers – Stick diagram – NMOS Design Style – CMOS Design style – lambda based design rules– Simple Layout examples

9 HOURS

9 HOURS

UNIT III SUBSYSTEM DESIGN & LAYOUT

Switch Logic – Pass transistors and transmission gates – Two input NMOS, CMOS gates: NOT– NAND– NOR gates – Other forms of CMOS logic – Static CMOS logic-Dynamic CMOS logic – Clocked CMOS logic - Precharged domino CMOS logic – Structured design of simple Combinational logic design– Multiplexers – Clocked sequential circuits – Two phase clocking – D-Flip-flop-Charge storage - Dynamic register element –Dynamic shift register

UNIT IV PROGRAMMABLE LOGIC DEVICES

Programmable Logic Devices – PLA , PAL – Finite State Machine design using PLA – Introduction to FPGA – FPGA Design flow –Architecture – FPGA devices: Xilinx XC 4000 – Altera cyclone III

UNIT V VERILOG HDL DESIGN PROGRAMMING

Basic concepts: VLSI Design flow, Modeling, Syntax and Programming, Design Examples:Combinational Logic – Multiplexer, Decoder/Encoder, Comparator, Adders, Multipliers, Sequential logic- Flip Flops, Registers, and Counters, Memory-Introduction to back end tools.

REFERENCES:

1. Douglas A. Pucknell, K. Eshragian, — Basic VLSI Design , Third edition, PHI, 2009

2.Neil.H.E.Weste,KamaranEshraghian,—PrinciplesofCMOSVLSIDesign,Second Edition, AddisoWesleyPublications,2002

3.SamirPalnitkar,—VerilogHDL–GuidetoDigitaldesignandsynthesis, SecondEdition Pearson Education, 2009

4. WayneWolf, -- ModernVLSIDesign, PearsonEducation, 2003

5.https://en.wikipedia.org/wiki/Very-large-scale_integration

Computer usage: HDL simulation and tool, viz., Modelsim.

Professional component

General	-	0%
Basic Sciences	-	0%
Engineering sciences & Technical arts	-	0%
Professional subject	-	100%

Broad area : Communication | Signal Processing | Electronics | VLSI | Embedded

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 1 st week	Session 1 to 14	2 Periods
2	Cycle Test-2	September 2 nd week	Session 15 to 28	2 Periods
3	Model Test	October 2 nd week	Session 1 to 45	3 Hrs
4	University Examination	ТВА	All sessions / Units	3 Hrs.

9 HOURS

9 HOURS

9 HOURS

Mapping of Instructional Objectives with Program Outcome

The goals of the course is to ensure that the learners become familiar		Correlates to program outcome		
	Н	М	L	
Identify the various IC fabrication methods.	С	d	е	
Express the Layout of simple MOS circuit using Lambda based design rules.	d	е	С	
Apply the Lambda based design rules for subsystem design.	b	С	е	
Differentiate various FPGA architectures.	е	С	d	
Design an application using Verilog HDL.	С	k	е	
Concepts of modeling a digital system using Hardware Description Language.	С	k	е	

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

Session	Topics	Problem solving (Yes/No)	Text / Chapter
UNITIN	MOS TRANSISTOR THEORY		
1.	MOSFET– Enhancement mode, Depletion mode	No	
2.	Fabrication- NMOS- P-well,	No	
3.	Fabrication- NMOS- N-well, Twin-Tub	No	[D1] Chapter 1
4.	Fabrication- PMOS	No	
5.	Fabrication- CMOS	No	
6.	BiCMOS Technology	No	
7.	Comparison with CMOS.	No	
UNIT II	MOS CIRCUITS AND DESIGN		
8.	Basic Electrical properties of MOS circuits – DC	No	
	Equations, Inverter delays		
9.	NMOS & CMOS inverter	No	
10.	Second Order Effects	No	7
11.	Basic circuit concepts	No	
12.	Sheet resistance-Area Capacitances-Capacitance calculations	No	[R1] Chapter -2,3,5
13.	Scaling of MOS Devices	No	
14.	Scaling Models and Scaling Factors	No	
15.	MOS layers – Stick diagram	No	
16.	NMOS Design Style – CMOS Design style	No	
17.	Lambda based design rules- Simple Layout examples	No	

UNIT	III SUBSYSTEM DESIGN & LAYOUT		
18.	Switch Logic – Pass transistors and transmission gates	No	
19.	Two input NMOS, CMOS gates: NOT– NAND– NOR gates	No	
20.	Other forms of CMOS logic – Static CMOS logic	No	
21.	Dynamic CMOS logic	No	[R2] Chapter -6
22.	Clocked CMOS logic	No	
23.	Precharged domino CMOS logic	No	
24.	simple Combinational logic design– Multiplexers	No	
25.	Structured design of – Clocked sequential circuits	No	
26.	Two phase clocking – D-Flip-flop-Charge storage	No	
27.	Dynamic register element –Dynamic shift	No	
	register		
UNIT IV	PROGRAMMABLE LOGIC DEVICES		
28.	Programmable Logic Devices	No	
29.	Programmable Logic Array (PLA)	No	
30.	Programmable Array Logic (PAL)	No	
31.	Finite State Machine design using PLA	No	
32.	Introduction to FPGA	No	
33.	FPGA Design flow	No	[R2] Chapter - 10
34.	FPGA Architecture	No	
35.	FPGA devices: Xilinx XC 4000	No	
36.	Altera cyclone III	No	
UNIT V	VERILOG HDL DESIGN PROGRAMMING	1	
37.	Basic concepts: VLSI Design flow	No	
38.	Modeling, Syntax and Programming	No	
39.	Design Examples: Combinational Logic – Multiplexer	No	
40.	Decoder/Encoder	No	
41.	Comparator	No	[R3] Chapter -1,3
42.	Adders, Multipliers	No	
43.	Sequential logic- Flip Flops, Registers	No	
44.	Counters, Memory	No	
45.	Introduction to back end tools.	No	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow time for students to resolve various programs in Verilog for understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	10%
Cycle Test – II	-	10%
Model Test	-	25%
Attendance	-	5%
Final exam	-	50%

Prepared by: S.Beulah Hemalatha Assistant professor, Department of ECE

Dated :

Addendum

ABET Outcomes expected of graduates of B.Tech / ECE / program by the time that they graduate:

Engineering Graduate will have

a) an ability to apply knowledge of mathematics, science, and engineering fundamentals.

b)an ability to identify, formulate, and solve engineering problems

c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic,

environmental, social, political, ethical, health and safety, manufacturability, and sustainability

d)an ability to design and conduct experiments, as well as to analyze and interpret data

e)an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

f)an ability to apply reasoning informed by a knowledge of contemporary issues

g)an ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context

h) an ability in understanding of professional and ethical responsibility and apply them in engineering practices i) an ability to function on multidisciplinary teams

j) an ability to communicate effectively with the engineering community and with society at large

k) an ability in understanding of the engineering and management principles and apply them in Project and finance management as a leader and a member in a team.

Program Educational Objectives

PEO1: PREPARATION:

To provide strong foundation in mathematical, scientific and engineering fundamentals necessary to analyze, formulate and solve engineering problems in the field of Electronics And Communication Engineering.

PEO2: CORE COMPETENCE:

To enhance the skills and experience in defining problems in Electronics And Communication Engineering design and implement, analyzing the experimental evaluations, and finally making appropriate decisions.

PEO3: PROFESSIONALISM:

To enhance their skills and embrace new Electronics And Communication Engineering Technologies through self-directed professional development and post-graduate training or education

PEO4: SKILL:

To provide training for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS:

Apply the ethical and social aspects of modern communication technologies to the design, development, and usage of electronics engineerin

Course Teacher	Signature
Ms.S.BEULAH HEMALATHA	
Ms. M.JASMIN	

Course Coordinator (Ms.S.BEULAH HEMALATHA) Academic Coordinator () Professor In-Charge (Dr.) HOD/ECE (Dr.M.Sundararajan)